viernes, 6 de enero de 2017

El avance del año 2023


IBM dió a conocer  el una lista de hitos científicos innovadores con el potencial de cambiar la forma en que la gente trabajará, vivirá e interactuará durante los próximos 5 años en “IBM 5 in 5” (#ibm5in5) anual.
  • 1- Con la Inteligencia Artificial, nuestras palabras serán una ventana hacia nuestra salud mental  
  • 2 - La hiper-imagen y la Inteligencia Artificial nos darán visión de superhéroes
  • 3 - Los macroscopios nos ayudarán a entender la complejidad de la Tierra en detalle infinito
  • 4 - Los laboratorios médicos “on a chip” servirán como detectives de la salud para rastrear enfermedades a nano-escala
  • 5 - Los sensores inteligentes detectarán la contaminación medioambiental a la velocidad de la luz.
  • Las predicciones 5 en 5 de IBM (IBM 5 in 5) están basadas en tendencias de Mercado y sociales, así como en tecnologías emergentes de los laboratorios de IBM Research en todo el mundo, que pueden hacer posibles estas transformaciones. Aquí están los 5 instrumentos científicos que harán lo invisible visible en los próximos 5 años:

    Con la Inteligencia Artificial, nuestras palabras serán una ventana hacia nuestra salud mental 

  • Hoy, 1 de cada 5 adultos en los Estados Unidos experimenta un afección de salud mental, ya sea neurológica, (Huntington, Alzheimer, Parkinson, etc.) o mental (depresión o psicosis), cada año, y aproximadamente la mitad de las personas con severos trastornos psiquiátricos no reciben tratamientos. 
  • Globalmente, el costo de tratar trastornos mentales es mayor que el costo de la diabetes, problemas respiratorios y cáncer, todos combinados. La carga económica de los trastornos mentales alcanza el billón de dólares por año, solamente en Estados Unidos.
  • Si el cerebro es una caja negra que no entendemos totalmente, entonces el habla es la clave para descifrarla. En 5 años, lo que decimos y escribimos será utilizado como indicador de nuestro bienestar de salud física y mental. Los patrones en nuestra habla y escritura serán analizados por nuevos sistemas cognitivos y proveerán signos reveladores de enfermedades mentales y neurológicas en estado temprano de desarrollo, lo que ayudará a los médicos y a los pacientes a prevenir, monitorear y hacer seguimiento de dichas enfermedades.

    En IBM, los científicos están utilizando transcripciones y audios de entrevistas psiquiátricas, junto a técnicas de machine learning, para identificar patrones en el habla, para ayudar a los médicos clínicos a predecir y monitorear con precisión enfermedades como psicosis, esquizofrenia, manía y depresión.
  • En el futuro, técnicas similares podrían ser utilizadas para ayudar a los pacientes con Parkinson, Alzheimer, enfermedad de Huntington, trastorno de estrés postraumático, y hasta condiciones de comportamiento, como autismo y TDAH. La computación cognitiva puede analizar las palabras habladas o escritas del paciente, para buscar indicadores que se encuentran en el lenguaje, como significado, sintaxis y entonación. Combinar los resultados de estas mediciones con aquellas realizadas con wearable devices y con sistemas de imagen  (resonancias magnéticas y encefalogramas), puede mostrarnos una imagen completa de la persona.
  • La hiper-imagen y la Inteligencia Artificial nos darán visión de superhéroes
    Más del 99.9 % del espectro electromagnético no puede ser observado por el ojo humano. En los últimos 100 años, los científicos han construido instrumentos que pueden emitir y percibir energía en distintas longitudes de onda. 
    Hoy en día confiamos en algunos de dichos instrumentos para tomar imágenes de nuestro cuerpo, ver la cavidad dentro de un diente, revisar nuestras maletas en el aeropuerto, o aterrizar un avión en la niebla. Sin embargo, estos instrumentos son increíblemente especializados y caros, y solamente ven a través de partes específicas del espectro electromagnético.

  • En 5 años, nuevos dispositivos de imagen que utilizarán hiper-imagen e Inteligencia Artificial nos ayudarán a ver ampliamente, más allá del dominio de la luz visible, a través de la combinación de múltiples bandas del espectro electromagnético, y así revelar información de valor o peligros potenciales, que de otro modo serían desconocidos o no perceptibles a la vista. Más importante, estos dispositivos serán portátiles, accesibles y asequibles, para que la visión de superhéroe sea parte de nuestras experiencias de todos los días.
  • Una visión de los fenómenos físicos invisibles o vagamente visibles que nos rodean podría ayudar a que las condiciones de la carretera y el tráfico sean más claras para los conductores y los automóviles auto-dirigidos. Por ejemplo, utilizando imágenes de onda milimétrica, una cámara y otros sensores, la tecnología de hiper-imagen podría ayudar a un auto a ver a través de la lluvia, detectar condiciones peligrosas y difíciles de ver como hielo en el pavimento, o decirnos si hay algún objeto en el camino, incluyendo la distancia y el tamaño. La tecnología de la computación cognitiva razonará sobre esta data y reconocerá lo que podría ser una lata de basura, un ciervo cruzando la carretera, o un bache que podría resultar ser un neumático desinflado.

    Incorporada en nuestros teléfonos, estas mismas tecnologías podrían tomar imágenes de nuestra comida para mostrar la información de valor nutricional, o si es sano para comerlo. Una hiper-imagen de una medicina o de un cheque puede decirnos si es fraudulento o no. Lo que alguna vez estuvo más allá de la percepción humana, podrá ser visto.

    Hoy, los científicos de IBM están construyendo una plataforma de hiper-imagen compacta que “ve” a través de porciones separadas del espectro electromagnético, en una plataforma que potencialmente habilitará una gran cantidad de dispositivos y aplicaciones prácticas y asequibles.
    Los macroscopios nos ayudarán a entender la complejidad de la Tierra en detalle infinito
    Hoy, el mundo físico solo nos deja entrever nuestro complejo e interconectado ecosistema. Reunimos exabytes de datos –pero la mayoría está desorganizado. De hecho, un estimado del 80 por ciento del tiempo de un científico de datos es consumido depurando datos, en vez de analizando y entendiendo lo que dichos datos no están tratando de decir.

    Gracias al Internet de las Cosas, nuevas fuentes de datos se vierten de millones de objetos conectados – desde refrigeradores, lámparas y el monitor de ritmo cardíaco, hasta sensores remotos como drones, cámaras, satélites y matrices de telescopios. Hoy ya hay más de 6.000 millones de dispositivos conectados, generando decenas de exabytes de datos por mes, con un porcentaje de crecimiento de más del 30 por ciento por año.
  • En 5 años, utilizaremos algoritmos y software de machine-learning para ayudarnos a organizar la información sobre el mundo físico, para ayudar a traer la vasta y compleja cantidad de datos reunidos por los miles de millones de dispositivos dentro del rango de nuestra visión y comprensión. A esto lo denominamos "macroscope" – pero a diferencia del microscopio, que ve lo que es muy pequeño, o del telescopio que puede ver lo que está muy lejos, es un sistema de software y algoritmos que trae todos los complejos datos de la Tierra combinados, para analizarlos y entender su significado.
  • En 2012, IBM Research comenzó a investigar este concepto en Gallo Winery, integrando riego, suelo, y datos del clima con imágenes satelitales y otros datos de sensores, para predecir la cantidad de riego específica para producir el rendimiento y calidad óptima de la uva. En el futuro, la tecnología macroscópica nos ayudará a escalar este concepto a cualquier parte del mundo.

  • Los laboratorios médicos “on a chip” servirán como detectives de la salud para rastrear enfermedades a nano-escala
    La detección temprana de las enfermedades es clave. En la mayor parte de los casos, cuanto antes es detectada la enfermedad, mayor es la probabilidad de que pueda ser curada o bien tratada. Sin embargo, las enfermedades como cáncer o Parkinson pueden ser difíciles de detectar – escondidas en nuestro cuerpo antes de que los síntomas comiencen a aparecer. La información sobre nuestro estado de salud puede ser extraída de pequeñas bio-partículas de fluidos corporales como la saliva, lágrimas, sangre, orina y sudor. Las técnicas científicas existentes enfrentan desafíos de capturar y analizar estas bio-partículas, que son miles de veces más pequeñas que el diámetro de una hebra de cabello humano.

    En los próximos 5 años, nuevos laboratorios médicos on a chip servirán como detectives de nanotecnología en salud – rastreando pistas invisibles en nuestros fluidos corporales y haciéndonos saber inmediatamente si tenemos alguna razón por la cual consultar a un médico. El objetivo es reducir hasta un solo chip de silicio todos los procesos necesarios para analizar una enfermedad, que normalmente se llevaría a cabo en un laboratorio de bioquímica a gran escala.
    La tecnología lab-on-a-chip fundamentalmente podría ser empaquetada en un conveniente dispositivo de mano, para ayudar a las personas a medir rápida y regularmente la presencia de bio-marcadores que se encuentran en pequeñas cantidades de fluidos corporales, y enviar dicha información a través de la nube, desde la comodidad de su casa. Allí, podría ser combinada con otros datos de dispositivos habilitados por IoT, como monitores de sueño o relojes inteligentes, y analizarlos por sistemas de información de inteligencia artificial.
  • En IBM Research, los científicos están desarrollando nanotecnología lab-on-a-chip que pueda separar y aislar bio-partículas en partes de 20 nanómetros de diámetro, una escala que nos da acceso al ADN, virus y exosomas. Esas partículas pueden ser analizadas para potencialmente revelar la presencia de enfermedades, aun cuando no hemos tenido síntomas. 
  • Los sensores inteligentes detectarán la contaminación medioambiental a la velocidad de la luz
  • La mayor parte de los contaminantes no son visibles al ojo humano, hasta que sus efectos hacen imposible que los ignoremos. El metano, por ejemplo, es el componente primario del gas natural, considerado comúnmente como una fuente limpia de energía. Pero si el metano se escapa en el aire antes de ser utilizado, puede dañar la atmósfera de la Tierra. Se estima que el metano será el segundo mayor contribuidor del calentamiento global luego del dióxido de carbono (CO2).

  • En los Estados Unidos, las emisiones de gas y petróleo son las fuentes industriales de gas metano más grandes en la atmósfera. La Agencia de Protección Medioambiental de Estados Unidos (EPA) estima que más 9 millones de toneladas métricas de metano se han filtrado de los sistemas de gas natural en 2014. Si lo medimos como equivalente de CO2- equivalente a más de 100 años, corresponde a más gases de efecto invernadero que los emitidos por Estados Unidos en hierro y acero, cemento y las instalaciones de fabricación de aluminio; todos combinados.

    En 5 años, nuevas y asequibles tecnologías sensoriales, desarrolladas cercanas a los pozos de extracción de gas natural, instalaciones de almacenamiento, y a lo largo de las cañerías de distribución, ayudarán a determinar con precisión y en tiempo real las pérdidas invisibles. Las redes de sensores de IoT conectadas de forma inalámbrica a la nube, proveerán monitoreo continuo de la vasta infraestructura de gas natural, permitiendo encontrar las pérdidas de gas en minutos, en lugar de semanas, reduciendo la contaminación, los residuos y la probabilidad de eventos catastróficos.

    Científicos de IBM están abordando esta visión, trabajando con los productores de gas natural como Southwestern Energy, para explorar el desarrollo de un sistema inteligente de monitoreo de metano, como parte del programa ARPA-E Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR).

    En el centro de IBM Research está la fotónica de silicio, una tecnología en evolución que transfiere datos a través de la luz, permitiendo la utilización de la computación literalmente a la velocidad de la luz. Estos chips podrían estar incorporados en una red de sensores en el suelo, en infraestructura, o hasta volar en drones autónomos, generando insights que, cuando se combinan con datos del viento en tiempo real, información satelital, y otras fuentes históricas, pueden ser utilizados para crear modelos ambientales complejos para detectar el origen y cantidad de contaminadores a medida que ocurren.

    Por mayor información sobre IBM 5 en 5, visitar; 


No hay comentarios.: